УНИКАЛЬНАЯ ВЫСОКОНАПОРНАЯ ЛИНЕЙКА НАСОСОВ **ONIXLINE**

Hacocы линии ONIXline для перекачки крахмала.

Линейка ONIXline - это новейшая разработка в нашей номенклатуре оборудования. Данный насос разработан на основе многолетнего опыта по конструированию насосов. В разработке применялась новейшая технология проточного моделирования.

СОВЕРШЕНСТВО В КАЖДОЙ ДЕТАЛИ

Линейка насосов ONIXline обеспечивает высочайшую производительность и бережное перекачивание без пульсаций. Вместительная уплотнительная камера позволяет использовать широкий спектр уплотнительных систем. Корпус насоса оснащен различными подключениями для подачи охлаждающей и промывочной жидкости, а также для создания противодавления в торцевом уплотнении.

КОНСТРУКТИВНЫЕ ПРЕИМУЩЕСТВА

1 Быстросъемная крышка

Для замены любых частей, соприкасающихся со средой, достаточно отвинтить четыре рым-болта и снять быстросъемную крышку.

2 Защита корпуса, опционально

Радиальные и аксиальные защитные пластины предохраняют корпус насоса от износа. Их можно заменить за пару минут.

3 Оптимизированные входные и выходные порты

Бережное перекачивание жидкостей без турбулентности через оптимизированные входные и выходные порты.

4 Роторы

Специальная геометрия роторов с 90° винтовой формой обеспечивает перекачку без пульсаций и высокую производительность.

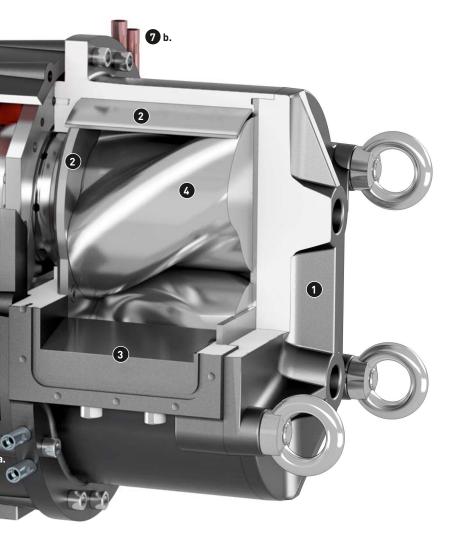
5 Уплотнительная камера

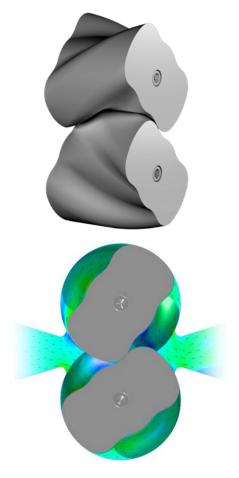
В уплотнительной камере могут размещаться различные конфигурации уплотнений.

6 Синхронизирующий редуктор и подшипники

в сочетании с оптимизированной проточной частью корпуса и точно подогнанными роторами обеспечивают наилучшую производительность.

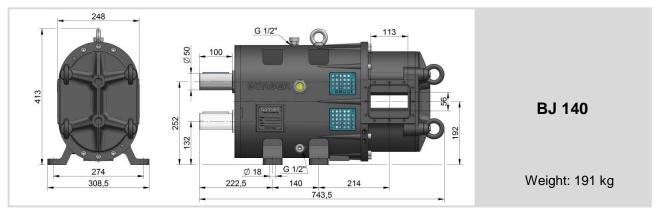
7 Подключения циркуляционной системы. Возможность установки к уплотнению затворной, промывочной или циркуляционной системы (а. = приток | b. = отток).

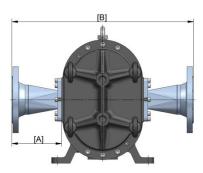

KOPOTKO ОБ ONIXLINE

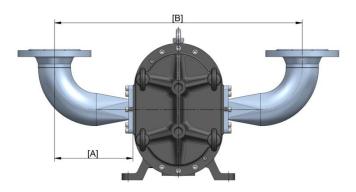

- + давление до 16 бар
- + оптимизированная проточная часть корпуса
- + перекачка без пульсаций благодаря специальной геометрии роторов
 - + энергоэффективность
 - + увеличенное пространство для установки различных торцевых уплотнений

Тип насоса	Число оборотов в об./мин			ительность ¹³ /ч	Макс. давление	Макс. Темп.
	Мин.	Макс.	Мин.	Макс.	в бар	в°С
ONIXline BJ 090	50	800	2,7	43	16	до 200
ONIXline BJ 140	50	800	4,2	67	13	до 200
ONIXline BL 190	50	800	5,7	91	16	до 200
ONIXline BL 280	50	800	8,4	134	13	до 200

ВЫСОКАЯ ЭФФЕКТИВНОСТЬ

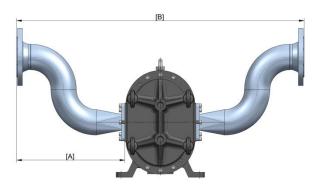

Инновационные роторы (поворот спирали 90°) и оптимизированная проточная часть корпуса в сочетании с прочными подшипниками и синхронизирующим редуктором обеспечивают отличную эффективность даже при высоком давлении.





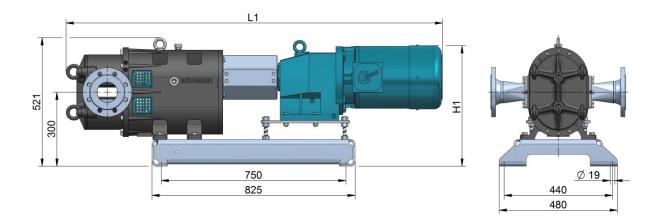
Design 1 | Short, straight pipe connectors with connection flange and O-ring seal (approx.)

		Size								
			BJ 090				BJ 140			
Nominal	Standard:	DIN/D	IN EN	ANSI/	ASME	DIN/D	IN EN	ANSI/ASME		
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 50 (2")		150	548	175	586	_	_	_	_	
DN 65 (2½")		150	548	175	598	150	548	175	598	
DN 80 (3")		150	548	170	588	150	548	170	588	
DN 100 (4")		150	548	174	596	150	548	174	596	
DN 125 (5")		200	648	234	716	200	648	234	716	
DN 150 (6")		200	648	234	716	200	648	234	716	



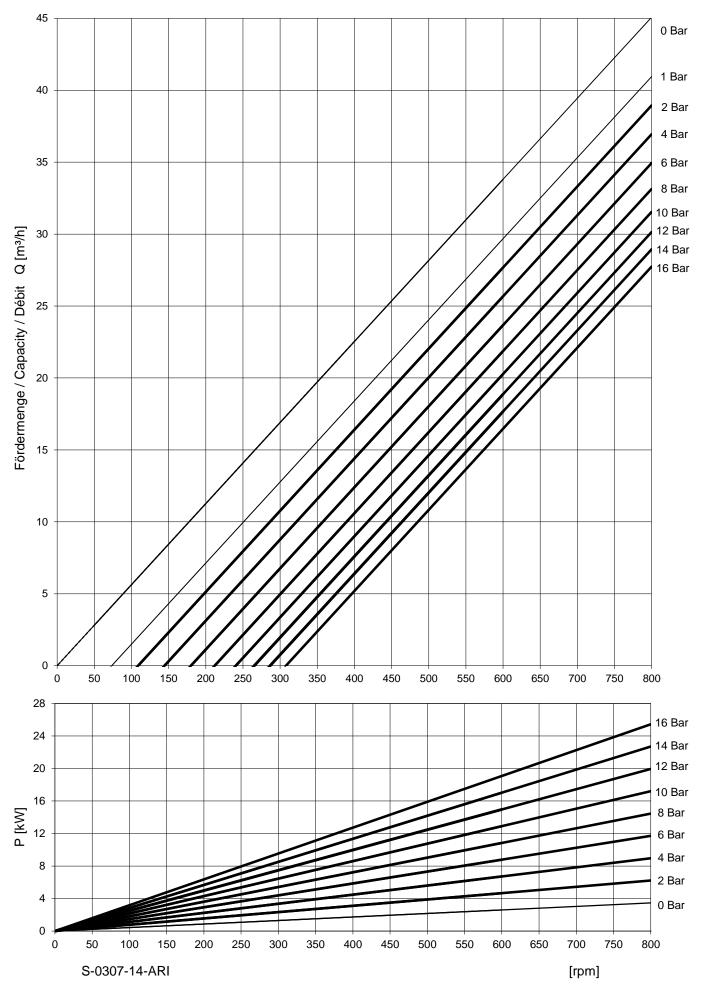
Design 2 | 90° elbow up in mm (approx.)

		Size								
			BJ (090			BJ 140			
Nominal	Standard:	DIN/D	IN EN	ANSI/	ASME	DIN/D	IN EN	ANSI/ASME		
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 65 (2½")		200	648	200	648	200	648	200	648	
DN 80 (3")		214	676	214	676	214	676	214	676	
DN 100 (4")		251	648	251	750	251	648	251	750	
DN 125 (5")		335	918	335	918	335	918	335	918	
DN 150 (6")		374	996	374	996	374	996	374	996	



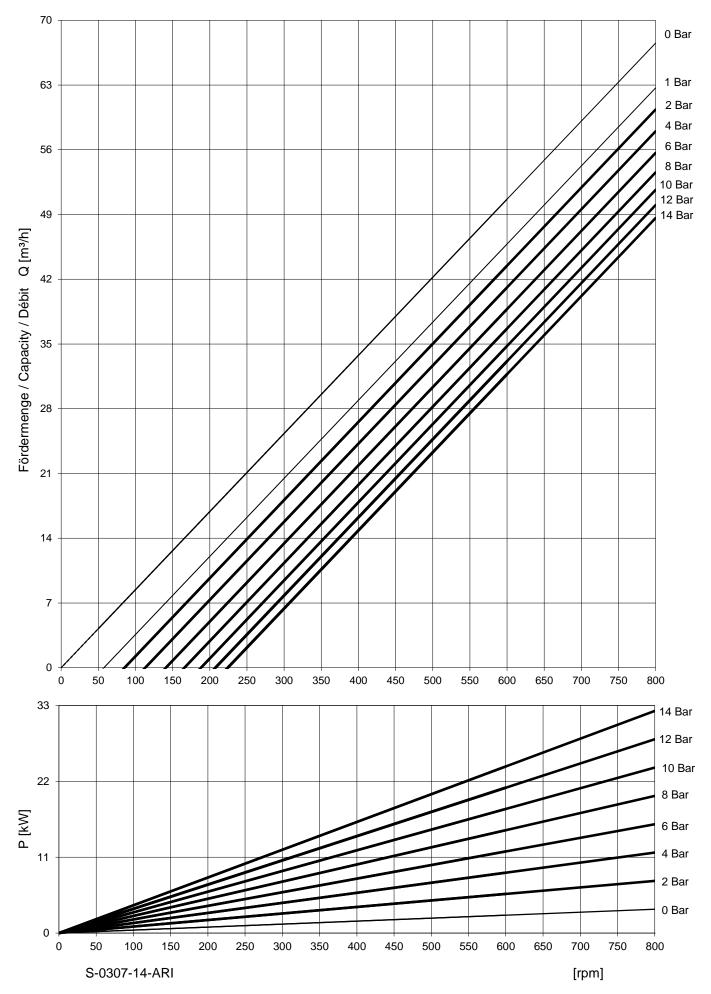
Design 6 | Gooseneck version in mm (approx.)

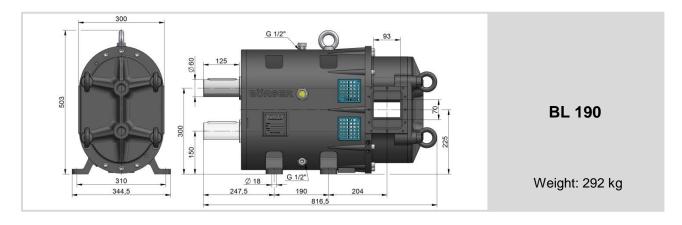
		Size								
			BJ (090			BJ 140			
Nominal	Standard:	DIN/E	IN EN	ANSI/	ASME	DIN/D	IN EN	ANSI/ASME		
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 65 (2½")		340	928	365	978	340	928	365	978	
DN 80 (3")		378	1.004	398	1.044	378	1.004	398	1.044	
DN 100 (4")		454	928	478	1.204	454	928	478	1.204	
DN 125 (5")		580	1.408	615	1.478	581	1.410	615	1.478	
DN 150 (6")		658	1.564	692	1.632	658	1.564	692	1.632	

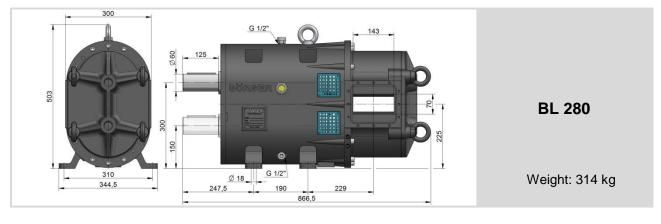


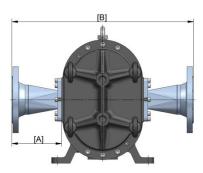
Standard unit in mm (approx.)

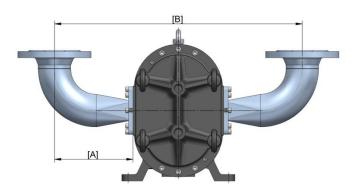
	Size									
	E	3J 090		BJ 140						
Drive	Weight	Dimer	nsions	Weight	Dimer	nsions				
[kW]	[kg]	L1	H1	[kg]	L1	H1				
2,2	approx. 300	1.355	460	_	_	_				
3	approx. 335	1.355	460	_	_	_				
4	approx. 345	1.400	470	approx. 355	1.440	470				
5,5	approx. 350	1.490	490	approx. 360	1.530	490				
7,5	approx. 355	1.500	490	approx. 365	1.540	490				
9,2	approx. 360	1.505	490	approx. 370	1.545	490				
11	approx. 395	1.565	515	approx. 405	1.605	515				
15		_	_	approx. 430	1.610	515				


ONIX - BJ 90 Primus



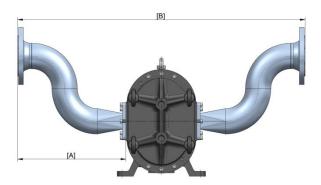

ONIX - BJ 140 Primus





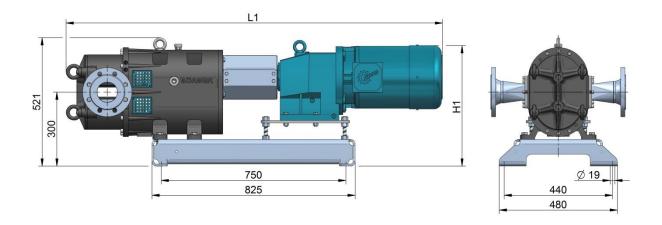
Design 1 | Short, straight pipe connectors with connection flange and O-ring seal (approx.)

		Size								
			BL	190			BL 280			
Nominal	Standard:	DIN/D	IN EN	ANSI/	ASME	DIN/D	IN EN	IN EN ANSI/		
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 80 (3")		150	600	170	640	_	_	_	_	
DN 100 (4")		150	600	174	648	150	600	174	648	
DN 125 (5")		200	600	234	768	200	700	234	768	
DN 150 (6")		200	700	234	768	200	700	234	768	
DN 200 (8")		300	900	340	980	300	900	340	980	
DN 250 (10")		_	_	_	_	300	900	346	992	



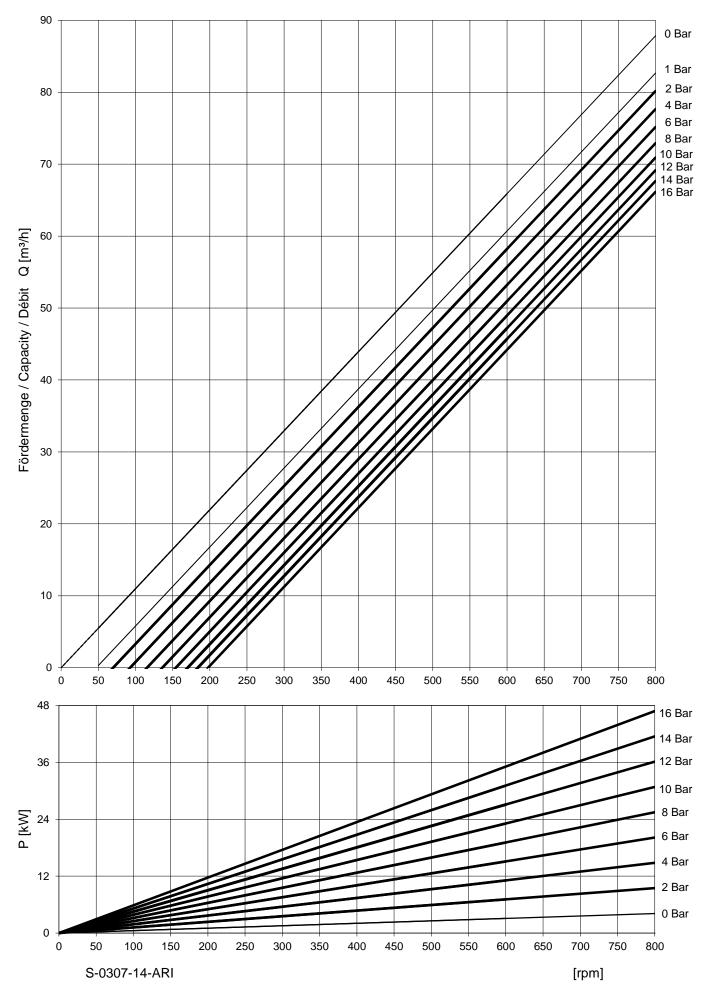
Design 2 | 90° elbow up in mm (approx.)

		Size								
			BL	190			BL 280			
Nominal	Standard:	DIN/D	IN EN	ANSI/ASME		DIN/D	IN EN	ANSI/	ASME	
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 80 (3")		214	728	214	728	_	_	_	_	
DN 100 (4")		251	802	251	802	251	802	251	802	
DN 125 (5")		335	728	335	970	335	970	335	970	
DN 150 (6")		374	1.048	374	1.048	374	1.048	374	1.048	
DN 200 (8")		543	1.386	543	1.386	543	1.386	543	1.386	
DN 250 (10")		_	_	_	_	613	1.526	613	1.526	



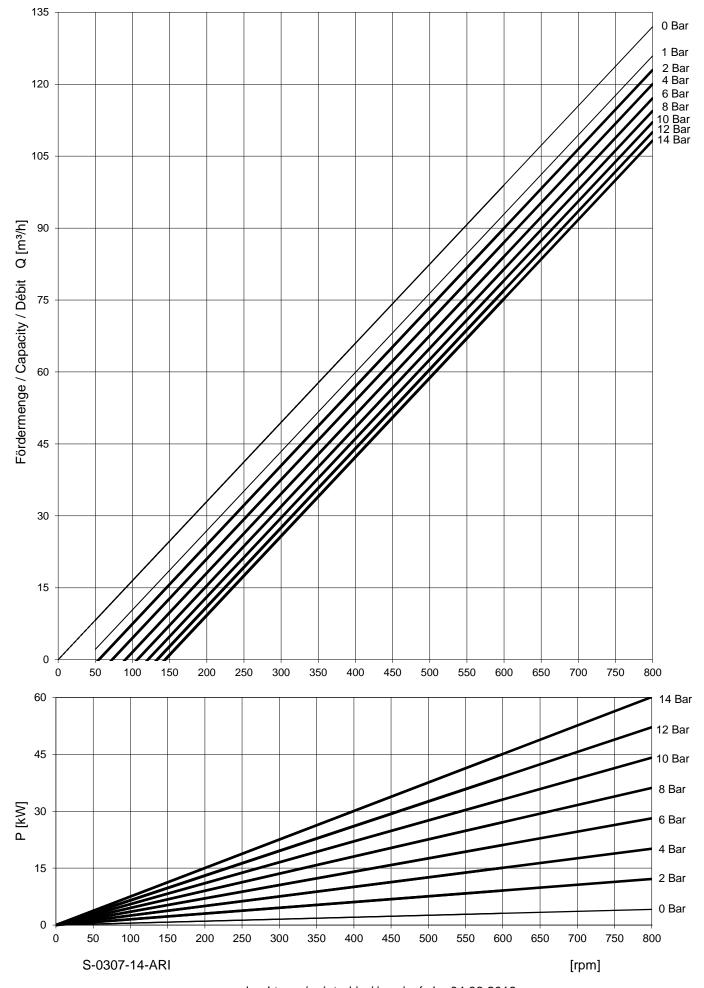
Design 6 | Gooseneck version in mm (approx.)

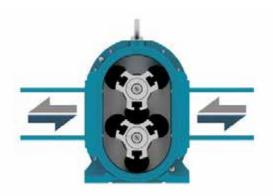
			Size							
		BL 190					BL 280			
Nominal	Standard:	DIN/D	IN EN	ANSI/	ASME	DIN/E	IN EN	ANSI/ASME		
diameter:	Dimension:	Α	В	Α	В	Α	В	Α	В	
DN 80 (3")		378	1.056	398	1.096	_	_	_	_	
DN 100 (4")		454	1.208	478	1.256	454	1.208	478	1.256	
DN 125 (5")		580	1.056	614	1.528	580	1.460	614	1.528	
DN 150 (6")		658	1.616	692	1.684	658	1.616	692	1.684	
DN 200 (8")		910	2.120	950	2.200	910	2.120	950	2.200	
DN 250 (10")		_	_	_	_	1.062	2.424	1.108	2.515	



Standard unit in mm (approx.)

	Size									
	1	BL 190		BL 280						
Drive	Weight	Dimen	sions	Weight	Dimen	sions				
[kW]	[kg]	L1	H1		L1	H1				
7,5	approx. 485	1.570	555	_	_	_				
9,2	approx. 505	1.605	555	_	_	_				
11	approx. 540	1.685	555	_	_	_				
15	approx. 570	1.720	580	approx. 595	1.770	580				
18,5	approx. 620	1.880	600	approx. 655	1.930	600				
22	approx. 625	1.880	605	approx. 650	1.930	605				
30	_	_	_	approx. 795	2.060	630				
37	_	_	_	approx. 840	2.060	650				


ONIX - BL 190 Primus


ONIX - BL 280 Primus

РОТОРНО-ЛОПАСТНЫЕ НАСОСЫ -

ПРОЧНЫЕ, НАДЕЖНЫЕ, ИНДИВИДУАЛЬНЫЕ

Роторно-лопастные насосы фирмы Börger уже более 25 лет применяются для защиты окружающей среды и в коммунальном хозяйстве. Они устойчивы к воздействию твердых включений, надежны и энергоэффективны. Насосы Börger без проблем перекачивают жидкости с илом, абразивом и высоким содержанием твердых частиц.

ПРИНЦИП ДЕЙСТВИЯ

Роторно-лопастные насосы Börger – самовсасывающие бесклапанные объемные насосы. Благодаря равномерному вращению пары роторов, на всасывающей стороне возникает разряженная зона, затягивающая жидкость в рабочую камеру насоса. Вращаясь, роторы перемещают рабочую среду в напорный патрубок. Изменения направления вращения роторов приведет к изменению направления потока жидкости.

КОНСТРУКЦИЯ

быстросъемную крышку.

Быстросъемная крышка
Для замены любых частей,
соприкасающихся со средой, достаточно
отвинтить четыре рым-болта и снять

2 Роторы

Большой выбор высококачественных роторов для перекачки любой среды без пульсаций.

3 Защита корпуса

Радиальные и аксиальные защитные пластины предохраняют корпус насоса от износа. Их можно заменить за пару минут.

Промежуточная камера и уплотнение вала Большая промежуточная камера обеспечивает высокий уровень надежности. Торцевое уплотнение подбирается в зависимости от перекачиваемой среды.

5 Синхронизирующий редуктор с подшипниками

Высококачественные подшипники, не требующие технического обслуживания, и синхронизирующий редуктор обеспечивают равномерный и мягкий ход роторов, что в свою очередь гарантирует длительный срок службы насоса.

КРАТКО О РОТОРНО-ЛОПАСТНЫХ НАСОСАХ:

- + 25 типоразмеров с производительностью от 1 до 1500 м²/ч
- + самовсасывание и перекачка воздушноводяной смеси
- + устойчивость к воздействию твердых включений
 - + максимальная простота и удобство обслуживания (MIP)
 - + компактная конструкция
 - + валы насоса установлены на подшипниках только с одной стороны
 - + реверсивность

ПРИМЕР ЭКСПЛУАТАЦИИ - МЕМБРАННАЯ ФИЛЬТРАЦИОННАЯ УСТАНОВКА

8 роторно-лопастных насосов фирмы Börger применяются на фильтрационной установке для прокачки очищаемой воды через фильтрующую мембрану. Периодическая очистка мембраны производится фильтруемой водой при помощи обратной промывки. По этой причине оператору станции по водоподготовке требовались насосы с возможностью реверсивной перекачки и хорошими характеристиками всасывания. Так как в режимах фильтрации и промывки расход насосов разный, их поставили в комплекте с частотным преобразователем.

PA3H00БPA3HЫЕ И НАДЕЖНЫЕ УПЛОТНЕНИЯ BÖRGER

Торцевое уплотнение крайне важно для защиты атмосферы и привода насоса от перекачиваемой среды. Фирма Börger предлагает различные типы торцевых уплотнений. Уплотнения могут быть оснащены различными вспомогательными системами.

РАЗНООБРАЗИЕ УПЛОТНЕНИЙ

В каждом уплотнении Börger заложено ноу-хау, разработанное на основе многолетнего опыта производства насосов и торцевых уплотнений. Чтобы подобрать подходящее техническое решение Вашей задачи мы используем различные вариации одинарного или двойного торцевого уплотнения.

Изготовляя торцевые уплотнения для работы с конкретной средой, мы подбираем наиболее стойкие и долговечные материалы уплотнительных колец и корпуса торцевого уплотнения. Любой тип уплотнения доступен в картриджном исполнении. Картриджи можно очень быстро поменять через быстросъемную крышку.

По желанию клиента мы можем установить торцевое уплотнение другого производителя. При этом есть возможность оснастить уплотнение промывкой или термосифонной системой.

КРАТКО О РАЗЛИЧНЫХ ТИПАХ УПЛОТНЕНИЯ

- + возможны различные комбинации разнообразных материалов
- + одинарное и двойное торцевое уплотнение
- + возможность картриджного исполнения
- + специальное исполнение корпуса уплотнения для работы с жидкостями, содержащими твёрдые включения
 - + исполнение в соответствии со стандартами взрывозащиты АТЕХ, а также по стандартам чистоты воздуха TA-Luft

ОБСЛУЖИВАНИЕ НА МЕСТЕ (МІР) УДОБСТВО И ПРОСТОТА ОБСЛУЖИВАНИЯ

Время ремонта и простоя оборудования стоит денег и времени. Чтобы оборудование на Вашем предприятии работало без перебоев и как можно более эффективно, насосы фирмы Börger сконструированы по принципу MIP, поэтому обслуживающий персонал может заменить все изнашивающиеся детали на месте эксплуатации.

Насосы Börger рассчитаны на длительный срок службы. Их конструкция не имеет аналогов по удобству технического обслуживания. Все части насосов отличаются прочностью и долговечностью.

При эксплуатации насосов Börger нет необходимости заключать с нами договор на техническое обслуживание. Чтобы упростить обслуживание мы разработали конструкцию MIP (Maintenance in Place - англ. обслуживание на месте). Проще говоря, Вы можете взять ремонт и обслуживание насоса в свои руки. Изнашиваемые детали можно заменить на месте эксплуатации без демонтажа двигателя, не снимая насос с трубопровода. Техническое обслуживание силами Вашего персонала, быстро, просто и в ограниченном пространстве.

ЗАЩИТА ОТ ИЗБЫТОЧНОГО ДАВЛЕНИЯ

"VARIOCAP"

Роторно-лопастной насос и крышка с встроенным предохранительным клапаном, исполнены в соответствии со стандартами взрывозащиты ATEX.

Крышка с встроенным предохранительным клапаном - это простая и эффективная возможность обезопасить насос от избыточного давления. Насос защищен от неконтролируемых перепадов давления с помощью чисто механических процессов. При этом насос попрежнему может работать в реверсивном режиме.

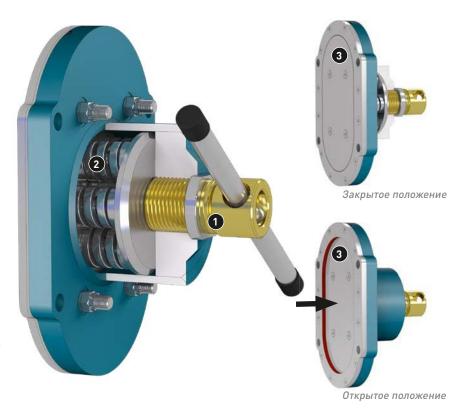
ПРИНЦИП ДЕЙСТВИЯ

Давление, возникающее при перекачке, воздействует на крышку насоса, которая состоит из внешнего кольца и внутренней подпружиненной крышки. Пока давление в камере насоса меньше чем давление пружин, крышка плотно прижата и находится в уплотняющей позиции. Если давление в камере насоса превышает настраиваемое давление пружин, крышка сдвигается, позволяя перекачиваемой среде уходить в противоток. Когда давление в камере насоса понижается, крышка возвращается на свое место и щель закрывается.

Эластичная уплотнительная мембрана обеспечивает герметичность крышки с предохранительным клапаном. Все остальные подвижные части не соприкасаются с перекачиваемой средой.

КОНСТРУКЦИЯ

1 Узел настройки


Поворачивая ручку узла настройки, можно менять прижимное давление крышки с предохранительным клапаном.

2 Запорные пружины

При помощи узла настройки можно менять напряжение пружин. Чем больше напряжение пружин, тем более высокое давление в рабочей камере насоса требуется чтобы сместить крышку с предохранительным клапаном.

3 Запорная пластина

Запорные пружины прижимают запорную пластину. Если давление в рабочей камере превышает настраиваемое противодавление пружин, запорная пластина сдвигается назад, выравнивая тем самым давление в рабочей камере насоса.

МНОГООБРАЗИЕ В КАЖДОЙ ДЕТАЛИ НАСОСЫ С ОБОГРЕВОМ

При помощи рубашки обогрева разогревается рабочая камера насоса, что препятствует остыванию жидкости во время перекачки.

Hacoc серии BLUEline с рубашкой обогрева и обогреваемой крышкой

ПРИНЦИП ДЕЙСТВИЯ

Рубашка обогрева, которую можно установить на уже готовый насос, монтируется снаружи на его корпус. Рубашка обогрева разогревает корпус насоса и препятствует остыванию перекачиваемой жидкости. Таким образом, например, жиры с низкой температурой плавления можно поддерживать в жидком состоянии. Температура рубашки обогрева поддерживается при помощи горячей воды, пара или масляного теплоносителя.

Дополнительно к рубашке обогрева насосы фирмы Börger можно оснастить обогреваемой крышкой. Данная крышка устанавливается вместо быстросъемной крышки и способствует дополнительному обогреву рабочей камеры насоса.

КОНСТРУКЦИЯ

1 Нагревательный элемент

Нагревательные элементы размещаются на верхней и нижней части корпуса насоса.

2 Крепление

Болты служат для крепления рубашки обогрева на корпусе насоса.

Подача тепла

Подача тепла осуществляется при помощи теплоносителя в нагревательный элемент по специальному трубопроводу.